
Scalable Boolean Methods
in a Modern Synthesis Flow

Eleonora Testa1,2, Luca Amarú1, Mathias Soeken2, Alan Mishchenko3, Patrick Vuillod1,
Jiong Luo1, Christopher Casares1, Pierre-Emmanuel Gaillardon4, Giovanni De Micheli2

1Synopsys Inc., Design Group, Sunnyvale, California, USA
2Integrated Systems Laboratory, EPFL, Switzerland

3Department of EECS, UC Berkeley, Berkeley, California, USA
4LNIS, University of Utah, Salt Lake City, Utah, USA

Abstract—With the continuous push to improve Quality of
Results (QoR) in EDA, Boolean methods in logic synthesis have
been recently drawing the attention of researchers. Boolean
methods achieve better QoR than algebraic methods but require
higher computational cost. In this paper, we introduce the Scal-
able Boolean Method (SBM) framework. The SBM consists of 4
optimization engines designed to be scalable in a modern synthesis
flow. The first presented engine is a generalized resubstitution
framework based on computing, and implementing, the Boolean
difference between two nodes. The second consists of a gradient-
based AIG optimization, while the third one is based on hetero-
geneous elimination for kerneling. The last proposed engine is a
revisiting of maximum set of permissible functions computation
with BDDs. Altogether, the SBM framework enables significant
synthesis results. We improve 12 of the best known area results in
the EPFL synthesis competition. Embedded in a commercial EDA
flow, the new Boolean methods enable -2.20% combinational area
savings and -5.99% total negative slack reduction, after physical
implementation, at contained runtime cost.

I. INTRODUCTION

As transistor scaling slows down at advanced technology
nodes, e.g., 10 nm, 8 nm, 7 nm and beyond, EDA innova-
tions are becoming essential to keep up with the (expected)
Quality of Results (QoR). This motivates EDA researchers to
revisit high-quality and high-computational-complexity opti-
mization methods in light of modern computing capabilities.
For instance, the recent work in [1] showed improvements
to Boolean resynthesis, enabling some high-quality Boolean
methods to be runtime affordable. In this paper, we ex-
tend the work from [1] and introduce the Scalable Boolean
Method (SBM) framework. The SBM presents a new set of
Boolean methods, orthogonal to the existing ones, capable of
finding undiscovered optimization tradeoffs, while remaining
scalable in a modern synthesis flow.

The main contributions of this paper, which all together
make SBM efficient, are:

1) a novel Boolean resubstitution framework which op-
timizes logic networks by computing and implementing the
Boolean difference between two nodes,

2) a gradient-based And-Inverter Graphs (AIGs) optimiza-
tion engine which learns the most effective AIG transforma-
tions during the optimization,

3) heterogeneous elimination and kerneling to enhance
division and logic sharing to work on heterogeneous thresholds
within the same network,

4) a revisiting of Maximum Set of Permissible Func-

tions (MSPF) computation using Binary Decision Dia-
grams (BDDs).

Altogether, the SBM optimization framework enables sig-
nificant synthesis results. We show substantial improvements
over the smallest known AIGs for EPFL benchmarks [2]. For
example, we show 1.5× size reduction in the smallest known
AIG for the EPFL arbiter benchmark. By mapping onto LUT-6
the AIGs obtained through our Boolean methods, we improve
12 of the best known area results in the EPFL synthesis
competition [2]. Embedded in a commercial EDA flow for
ASICs, the SBM framework enables -2.20% combinational
area savings and -5.99% total negative slack reduction, after
physical implementation, at contained runtime cost.

The remainder of this paper is organized as follows.
Section II provides some background on Boolean methods in
synthesis and discusses the motivation for this work. Section
III proposes a generalized resubstitution framework based
on Boolean difference optimization. Section IV introduces
the remaining optimization techniques: gradient-based AIG
optimization, heterogeneous elimination and kerneling, and
MSPF computation with BDDs. Section V shows experimental
results for the SBM framework over academic benchmarks and
commercial ASIC designs. Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Boolean Logic Optimization
Approaches to logic network optimization are divided into

algebraic methods and Boolean methods. While algebraic
methods are faster, Boolean methods achieve better results [3].
Boolean transformations rely on a complete Boolean algebra
and functional properties of logic circuits, which often include
don’t cares conditions. Permissible functions are one of the
many examples of don’t cares interpretation in synthesis. If
the function at a node n may be changed to another function
without changing the behavior at the primary outputs, then the
new function is called a permissible function for node n [4].
The set of all permissible functions for a node n is called its
Maximum Set of Permissible Functions (MSPF). As of today,
different logic reasoning engines are available for gathering
functional properties of a logic circuit. Here, we give some
background on truth tables, BDDs and SAT, as they are used
as engines in the SBM framework.

A truth table is a canonical representation of a Boolean
function where the function values are listed for all input
combinations. When Boolean methods are applied to small

windows of logic (≈ 15 inputs), they enable fast computation
and equivalence checking of two functions. They are usually
used together with partitioning techniques to allow Boolean
optimization. As an example, the Boolean resynthesis flow
in [1] uses truth tables as reasoning engine to compute MSPF.

Binary Decision Diagrams (BDDs, [5]) are directed acyclic
graphs representing a Boolean function. Each internal node of
the BDD implements the Shannon expansion f = xifxi

⊕x̄ifx̄i

of the function with respect to a variable xi, where fxi
and fx̄i

are the two cofactors. BDDs are largely employed in Boolean
optimization methods [3], [6]. Like truth tables, BDDs can
be used to check if a function is a permissible replacement
of another (≈ 20 inputs functions). This is usually performed
by checking functional equivalence, at either local or global
level [3]. BDDs are also employed for representing and mini-
mizing Boolean relations [6]. Boolean relations are considered
a superior version of don’t cares [3], used to capture the
flexibility of multi-output circuits. Further, BDDs are also used
for logic function decomposition. As an example, BDS [7]
is an optimization system for the synthesis of AND/OR and
XOR-based functions using BDDs.

SAT solvers have recently been used as Boolean method
engine for don’t cares computation. A SAT problem takes a
formula representing a Boolean function and decides if there
is an assignment of the variables for which the function is
equal to 1 (satisfiable). The work in [8] presents a method
to cast don’t cares computation as a SAT problem. More
recently, a SAT-based redundacy removal approach has been
presented [9].

The engines presented so far can be used for verifying
the applicability of Boolean transformations. An example of a
Boolean transformation, which will be used in the following
discussion, is resubstitution. Resubstitution rewrites the func-
tion of a node n as a new function of other nodes already
present in the network. If the new implementation of the node
is more compact than the previous one, resubstitution results
in area savings. We refer the interested reader to [3], [10], [11]
for a more detailed review on Boolean methods.

B. Motivation
Boolean optimization methods are more powerful and

complete than algebraic methods but come at a higher runtime
cost. As a consequence, their applicability in automated design
flows is limited, thus leaving possible optimization opportu-
nities unexplored. In this paper, we present a novel Boolean
optimization framework, called SBM. We specifically design it
to be scalable and to unveil further optimization opportunities
in modern synthesis flows.

III. BOOLEAN DIFFERENCE BASED OPTIMIZATION

This section presents a novel Boolean resubstitution frame-
work based on Boolean difference computation and implemen-
tation.

A. Theory
The Boolean difference of two Boolean functions

f(x1, . . . , xn) and g(x1, . . . , xn) is defined as [3]: ∂f
∂g = f⊕g,

where ⊕ is the XOR operator. The equation indicates whether
the two functions are functionally equivalent (i.e., the differ-
ence value with respect to inputs assignments is 0) or not (i.e.,
they have difference equal to 1).

∧

∨

x1 x3x2x5 x4

∨∧

∧

∨

f g

∨ ∧

∧

∧

∧

∨

∧

∧

∨

∧

(a) Logic network for functions f and g (in gray)

∨∧

∧

∧

∧

∨

⊕

∨

x1x3 x2 x5x4

∨ ∧

∧

∨

fg

(b) Function f rewritten as f = ∂f
∂g
⊕ g

Fig. 1: Boolean difference example

In this paper, we take advantage of the Boolean difference
to build a resubstitution framework. In the following discus-
sion, f and g are used both for the corresponding nodes in
the logic network and for the function they represent. Each
function f can be written as f = ∂f

∂g ⊕ g. While g is a node
already existing in the logic network, the term ∂f

∂g needs to be
retrieved in a compact logic form, so it could lead to size/depth
minimization. Consider, as an example, the logic network for
function f and g in Fig. 1(a). Each node in Fig. 1(a) is a
2-input gate, and dashed edges represent inverters. The total
number of nodes is the size of the network, and the number of
levels is its depth. The function g is the one highlighted in gray
in both Fig. 1(a) and (b), while function f is the one written
as ∂f

∂g ⊕ g in Fig. 1(b). Due the small size of the Boolean
difference network, the total number of nodes is reduced.

In this work, we exploit the concept of Boolean difference
in logic optimization. We focus on size reducing transforma-
tions, but depth reducing techniques could be developed in a
similar manner. We refer to function f and g as candidates
for Boolean difference, and to the inputs x1, . . . , xn as their
support. First, we discuss how to select the two candidates
f and g, then, we present an algorithm to compute and
implement the Boolean difference. Finally, we present the
global synthesis flow.

B. Identifying Viable Candidates
To ensure the scalability of this Boolean method, we eval-

uate and apply the Boolean difference locally on limited size
circuit partitions. The partitions are created by collecting all
the nodes in topological order and by sorting them according to
the similarity of their structural support. Each partition respects
some predefined characteristic, e.g., maximum number of pri-
mary inputs, maximum number of internal nodes n, maximum
number of levels, etc. In our implementation, we give priority
to the limit on the maximum number of levels, as they correlate

Algorithm 1 Boolean difference computation and implemen-
tation using BDDs
Input: Two nodes f and g, xor cost, all bdds
Output: A new node boolean diff equal to ∂f

∂g
⊕ g

1: boolean diff ← 0
2: bddf ← all bdds(f)
3: bddg ← all bdds(g)
4: bdd diff ← bddf ⊕ bddg
5: if bdd diff already exists in all bdds() then
6: return corresponding node
7: end if
8: if (size(bdd diff) > threshold) then
9: return null

10: end if
11: saving ← mffc(f) + nodes sharing
12: if (size(bdd diff) + xor cost > saving) then
13: return null
14: end if
15: bdiff node← bdd to node(bdd diff)
16: boolean diff ← bdiff node⊕ g
17: return boolean diff

with the complexity of the reasoning engine selected for the
Boolean difference computation. Nevertheless, we also ensure
partitions to have limited size and limited number of primary
inputs. Experimentally, we found promising bounds on the
number of levels ranging from 5 to 30, resulting in partitions
with controlled maximum size of 1000 nodes.

In order to find good candidates f and g, all pairs of
nodes inside each partition are considered. The supports for the
computation are the primary inputs of the partition itself. As
this requires the evaluation of n pairs of nodes for each node, in
the worst case, the time complexity of the resubstitution frame-
work is quadratic w.r.t. the partition size n. Experimentally, to
reduce the time complexity, we fixed the maximum number m
of pairs to be tried. Structural filtering can also accelerate the
computation. For example, the algorithm does not consider
nodes with less than one element in their shared support,
and it also neglects cases where f is completely included in
g, or partially included up to a certain threshold. Functional
filtering similar to the one in [1] also helps speeding up the
computation. After all speed ups, we can apply the method to
EPFL i2c and cavlc benchmarks monolithically, with a runtime
of 2.3 and 1.2 seconds, respectively.

C. Computing and Implementing The Difference
BDDs are the selected data structure to compute and

implement the Boolean difference. The pseudocode is depicted
in Alg. 1. Recall that f and g are two nodes belonging to
the same partition. The BDDs for all nodes in the partition
are precomputed and stored in the hashtable all bdds. The
algorithm computes the BDD of the Boolean difference as
XOR of the two BDDs. Thanks to the limited size of the
partition, BDDs allow fast Boolean difference computation.
If the BDD of the difference already exists in the hashtable,
the corresponding node is returned. In our implementation,
we did not perform any BDD variables ordering, as we are
dealing with small BDDs. This saves runtime, but it requires
a higher amount of memory to be used by the BDD package.
The memory usage plays a critical role. For instance, for the
EPFL cavlc benchmark, the algorithm does not converge in
a reasonable amount of time unless the memory used for the
BDD of the difference is freed at each iteration. In this last
case, the algorithm was applied on the whole network, which

Algorithm 2 Resubstitution flow based on Boolean difference
Input: Network N , xor cost
Output: Optimized network.
1: lists← topological sorted partitions(N)
2: for each list in lists do
3: all bdds← BDDs for all nodes in list
4: for nodes f in list do
5: for nodes g in list do
6: if f = g then
7: continue
8: end if
9: if f and g are not good candidates then

10: continue
11: end if
12: diff ← Boolean difference(f, g, xor cost, all bdds)
13: if size(diff) <= size(f) then
14: Change f with diff in N
15: end if
16: end for
17: end for
18: end for
19: return N

has 10 inputs and more than 600 nodes. To further prevent
memory issues, we set a maximum memory limit for the
employed BDD package. The BDD computation is bailed out
if the maximum memory limit is hit. This case results into a
BDD of size 0 for the given node, which will be disregarded
in the next steps of the algorithm.

Afterwards, structural filtering is applied on the BDD. In
case the BDD does not meet the size requirements, Alg. 1
returns null, which means the current pair of nodes can be
skipped. First, we limit the size of the BDD (lines 8–10 in
Alg. 1) to consequently limit the size of the difference network
once its BDD is merged into the AIG. This usually ensures
a limited size implementation for the Boolean difference, but
it may overlook some optimization opportunities. Empirically,
we found 10 to be a suitable tradeoff to have good QoR and
feasible runtime. The second filter skips pairs of nodes that
could result in a larger network implementation. Experimen-
tally, we skip nodes whose saving is smaller than the empirical
threshold set by the BDD size and the xor cost. The saving
resulting from the Boolean difference is the sum of the size
of the Maximum Fan-out Free Cone (MFFC, [12]) of f and
the total sharing of nodes between the Boolean difference
implementation and the existing network. The size of the BDD
sets a lower bound on the number of AIG nodes to implement
the Boolean difference. The xor cost is the number of AIG
nodes needed to implement the functionality of a two-input
XOR. According to the specific technology involved, the XOR
node has a different area ratio as compared to AND/OR nodes,
so the xor cost can have a different value.

The algorithm concludes with the implementation of the
Boolean difference node (lines 15 in Alg. 1) as an AIG,
obtained using structural hashing (strashing) on the corre-
sponding BDD. Optimization algorithms from the state-of-
the-art are applied on the AIG to guarantee an optimized
implementation.

D. Global Resubstitution Flow
We integrate the candidates selection and the Boolean

difference computation into a resubstitution framework. Alg. 2
depicts the pseudocode. The flow applies the resubstitution
framework to each partition N of the entire network. The

partitions can be chosen to be distinct or overlapping to cover
more optimization opportunities. The algorithm precomputes
and stores all BDDs in the hashtable, and considers all nodes in
topological order. Trivial pairs of nodes are skipped according
to criteria discussed in Section III-B. Thanks to the use of
BDDs, information needed for functional filtering of pairs
are immediately available. Alg. 1 is used to achieve the new
implementation of f using the Boolean difference. Alg 2
accepts a new implementation of f only if (i) it leads to
size minimization, or (ii) it does not increase the number of
nodes. This second case could reshape the network, open new
optimization opportunities and help escaping local minima.

IV. INTELLIGENT OPTIMIZATION ENGINES

This section introduces the remaining methods of SBM, in-
cluding gradient-based AIG optimization, heterogeneous elim-
ination for kerneling, and MSPF computation with BDDs.

A. Gradient-Based AIG Minimization
AIG optimization traditionally consists of a predetermined

sequence of primitive optimization techniques, forming a so-
called script, which is homogeneously applied to the whole
network [13]. One of the most popular AIG script in academia
is resyn2rs from ABC [13], with major primitive techniques
being rewrite, refactor and resub. In this work, we aim at
making AIG optimization automatically adaptive and diverse.
We foresee our tool to be adaptive by learning the most effec-
tive AIG transformations during the optimization script. This
is achieved by using gradient computation of the gain, and it
allows us to modify online the next attempted transformations
accordingly. We aim at making our tool diverse by trying
different types of AIG transformations on the same region of
logic. This makes results compete locally rather than globally.

The gradient based AIG engine we propose runs together
with a partitioning engine, either small scale or large scale
depending on the intended scope of the optimization. We
consider best result selection performed either in parallel or
in a waterfall model. Within the waterfall model, the first
successful move is picked, and all other moves are not tried.
This leads to better runtime as compared to parallel model but
it may overlook optimization opportunities. In the proposed
AIG engine, the waterfall model is a good tradeoff between
runtime and QoR. We define AIG optimization moves, which
are primitive transformations applicable locally. We consider
the following moves: rewriting, refactoring, resub, mspf resub
and eliminate, simplify & kerneling. All moves other than
rewriting are available in low and high effort modes, trading
runtime for QoR. All moves have an associated cost, which
depends on their runtime complexity. The optimization engine
starts by trying unit cost moves for each partition, and by
recording1 the gain of the best one. Until gain > 0, cheap
moves are iterated over the network and all its partitions. As
we hit local minima (gain = 0), higher cost moves start to be
introduced in the AIG engine. The most successful moves and
their sequence are recorded during the optimization to allow
moves with high success likelihood on the current design to be
tried with higher priority in the next iterations. The gradient
based AIG engine is called together with a cost budget, which
determines how many moves can be tried. The budget can be
automatically increased by the AIG engine, if the gain gradient

1All moves are designed to have gain ≥ 0 at all times, otherwise the
corresponding change is reverted.

exceeds a certain threshold over last k iterations. In other
words, the AIG engine continues simplifying a logic network
if the optimization trend is good enough, or terminates early
if the gain gradient is 0 over the last k iterations.

In our experiments, we obtained the best AIG optimizations
seen over academic and industrial benchmarks by using a cost
budget equal to 100 and k = 20, with minimum gain gradient
equal to 3%. In the experimental results section we will show
some of the smallest AIG known for the EPFL competition [2],
obtained through such AIG engine.

B. Heterogeneous Elimination for Kernel Extraction
Kernel extraction [10] is one of the most effective tech-

niques in logic optimization. This is thanks to the fact that
it allows us to share large portions of logic circuits, which
are hard to find with other techniques. For example, kernel
extraction is able to find common factors between very wide
(hundreds to thousands of inputs) operators appearing in HDL
descriptions of decoders and control logic.

The effectiveness of kernel extraction depends on the
properties and characteristics of the nodes’ SOPs. Indeed, prior
to kernel extraction, node elimination2 is often used to create
larger SOPs. Elimination keeps under control the maximum
number of terms or literals, and enables more extraction oppor-
tunities to be found. However, elimination is also usually run
network-wise homogeneously, i.e., with the same thresholds on
maximum number of terms or literals. In this way, the resulting
SOPs have similar size but not similar characteristics, which
is where the extraction opportunities arise.

In this work, we enhance elimination - kernel extraction to
work on heterogeneous thresholds within the same network.
While, in order to be exact, one would have to study the
correlation between a logic circuit characteristic and the ef-
fectiveness of eliminate before kerneling, this appears to be an
intractable problem. We take advantage of partitioning engines,
whose computation can be distributed in parallel, to accom-
plish heterogeneous elimination - kernel extraction. The idea
is to use different elimination thresholds depending on circuit
characteristics. Even though kernel extraction is not a Boolean
method, we categorized the eliminate enhancement as Boolean
because it applies, more generally, to Boolean division as well.

We first partition the network, with given partition charac-
teristics, and we apply elimination - kernel extraction to each
partition with different eliminate thresholds. We only keep the
best one, e.g., the one reducing the largest number of literals of
the partition. The elimination process works as follows. We go
over all nodes in the partition, and for each node, we estimate
the variation in the number of literals in the partition that would
result from the collapsing of the node into its fanouts. If this
variation is less than the specified threshold, the collapsing
is performed. The operation is repeated until no node gets
collapsed. Empirically, we found useful to try the following
eliminate thresholds: (-1, 2, 5, 20, 50, 100, 200, 300).

C. MSPF Computation with BDDs
The maximum set of permissible functions (MSPF) is

one of the most powerful interpretations of don’t cares for
synthesis. The work in [1] proposed truth table methods to
approximate MSPF during resubstitution. In this work, we

2Node elimination, also known as forward node collapsing, aims at collaps-
ing a node into its fanouts’ SOPs. As a result, the node is eliminated.

propose a BDD-based version of MSPF logic optimization,
which works on larger sub-circuits than those considered in [1].

The BDD-based MSPF optimization algorithm operates
as follows. First, nodes are arranged in topological order,
and further sorted w.r.t. an estimated saving metric for each
node. The MSPF information is computed for each node via
cofactoring. Specifically, the positive (negative) cofactor of the
node w.r.t. each primary output is computed using BDDs [14],
and stored as an array of BDD formulas, f0 (f1), with
size = |PO|. At this point the mspf(node) information is
initialized to logic 1: mspf(node) = bdd(1). Then, the actual
computation loops over all POs, and updates the MSPF as:
mspf(node) = mspf(node)∧((f̄0(poi)⊕f1(poi))∨dc(poi)),
where poi is the i-th PO under consideration, and dc(poi)
is any pre-existing don’t care condition at the i-th PO. The
computation stops if, at any point of the loop, no MSPF
is found for the current node, i.e., mspf(node) = bdd(0).
Otherwise, the MSPF information is passed to drive the
successive optimization steps. Based on the permissible func-
tions computed, the MSPF optimization algorithm can be
reapplied on each fanin of the current node to reduce area,
or another optimization metrics. For example, it is efficient
to check via BDDs if changing a fanin of node still respects:
bdd(nodenew) ∧ ¬mspf(node) = bdd(nodeold) ∧ ¬mspf(node)
In that case, the fanin is “connectable” as it generates a
permissible function at the current node. From there, standard
MSPF optimization algorithms [1] may be applied on top. As
in the Boolean difference implementation with BDDs, in the
MSPF algorithm we set a maximum memory limit. Also in
this case, the algorithm sets the BDD size of the node to 0 if
it hits the memory limit. The computation can then continue
by considering the other nodes.

Another key enhancement to this technique, as compared
to [1], is to look not just for one but for many connectable
fanins under MSPF. Among all these, only an irredundant
subset is actually tried. With truth tables, or even SAT, finding
many connectable fanins would be a quite expensive task. With
BDDs it is possible to perform such global queries more effi-
ciently thanks to BDD strong canonicity, in modern packages,
and efficient use of unique tables [15]. As a consequence, QoR
improves with BDD-based MSPF computation because of the
larger subset of solutions reachable.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the efficacy of the SBM
framework for synthesis. First, we consider the EPFL logic
synthesis competition [2]. In this scenario, we outperform
previous EPFL best results coming from various research
groups in industry and academia. Finally, we integrate our
Boolean methods in an industrial EDA flow for ASICs, and
show sensible QoR gains post place & route.

A. Methodology
We implemented the scalable Boolean methods as part

of a commercial design automation solution. We target size
reduction of logic networks, as, in the EDA flow, Boolean
methods are frequently called during logic structuring, which
mainly aims at reducing area. Nevertheless, we enforced a
tight control on the number of levels and the number of nets
during synthesis, as this is known to correlate with delay and
congestion later on in the flow.

We have integrated all the optimization techniques pre-
sented so far in an industrial logic synthesis tool, together with
state-of-the-art methods. We created a Boolean resynthesis
script which runs the following optimizations:
• AIG optimization: this consists of both state-of-the-art

methods [1] and our gradient-based AIG minimiza-
tion,

• heterogeneous elimination for kernel extraction, ap-
plied on partitioned networks of medium-large sizes,

• enhanced MSPF computation, using partitions of
medium size and BDDs,

• collapse and Boolean decomposition, applied on re-
convergent MFFC of the logic network,

• Boolean difference-based optimization to unveil hard
to find optimization and escape local minima,

• SAT-based sweeping and redundancy
removal as in [9].

The optimization flow is iterated twice, with different efforts.
Further, after each transformation, the logic network is trans-
lated into an AIG in order to have a consistent interface and
costing between the various steps of the flow.

We also implemented the SBM framework as a standalone
optimization package, to run tests on academic benchmarks.

B. EPFL Benchmarks
We present here our results on the EPFL benchmarks.

The EPFL benchmark suite project keeps track of the best
synthesis results, mapped into LUT-6, generated by EDA
research groups. In this work, we challenge the area (i.e.,
number of LUTs) category of the EPFL suite [2]. As the
EPFL best results come mapped into LUT-6, we use the
ABC [13] command “if -K 6 -a” in order to map our AIGs.
It is indeed known that LUT-6 minimization does not follow
strictly AIG minimization. In order to make our techniques
work in general for the LUT-6 experiment, we adapted our
tool accordingly. We inserted selective strashing of LUTs,
over previous best results, with optimization and remapping on
smaller partitions, in order to preserve some of the good LUT-
6 structures. Nevertheless, for some of the benchmarks (e.g.,
arbiter, router), the optimization script run on the original
unoptimized AIG [2], followed by plain “if -K 6 -a”, was
enough to beat previous best results. On the other hand,
other benchmarks (e.g., max) are mostly improved by the
Boolean difference method, which is capable of untangling
reconvergent logic not touched by other techniques.

Our results are summarized in Table I. We improved 12
of the previous best size (area) results3. Our improvements
range from just a few LUTs to several (tens) for large
circuits. We improve both the size results presented in [1]
and the ones coming from [16]. It is worth mentioning that
the EPFL benchmarks have been optimized several times in
the last 3 years by the most advanced techniques both from
industry and academia. This makes each improvement (even if
relatively small), significant. Our circuit implementations can
be downloaded at [2].

As already discussed above, for some other benchmarks,
a smaller AIG was not resulting in the best LUT-6 result.
We report the smallest AIGs obtained with our optimization
methodology in Table II. The size of the AIGs is smaller as
compared to the state-of-the-art. Further, in some cases, it is

3We compare our results to commit 87cf8ec in [2]

TABLE I: New Best Area Results For The EPFL Suite

Benchmark I/O LUT-6 count Level count
arbiter 256/129 365 117
div 128/128 3267 1211
i2c 147/142 207 15
log2 32/32 6567 119
max 512/130 522 189
mem ctrl 1204/1231 2086 23
mult 128/128 4920 93
priority 128/8 103 26
sin 24/25 1227 55
hypotenuse 256/128 40377 4530
sqrt 128/64 3075 1106
square 64/128 3242 76

TABLE II: Smallest AIG Results For The EPFL Suite

Benchmark I/O Size AIG Level count
arbiter 256/129 879 228
cavlc 10/11 483 78
div 128/128 19250 6228
i2c 147/142 710 25
log2 32/32 30522 348
mem ctrl 1204/1231 7644 40
mult 128/128 25371 317
router 60/30 96 21
sin 24/25 4987 153
hypotenuse 256/128 209460 24926
sqrt 128/64 19706 5399
square 64/128 17010 343
voter 1001/1 9817 66

much smaller than the AIG size leading to the best LUT-6
results. As an example, we show 1.5× size reduction in the
smallest known4 AIG for the EPFL arbiter benchmark.

C. ASIC Results
We tested a commercial EDA flow, enhanced with the SBM

framework, on 33 state-of-the-art ASICs, coming from major
electronics industries. Due to non-disclosure agreements, we
cannot provide details on each ASIC benchmark. However,
we present average results w.r.t. a baseline flow without
our Boolean methods. The post place & route results are
summarized in Table III. All benchmarks are verified with an
industrial formal equivalence checking flow.

Our complete design flow, embedding the new SBM
framework, enables sensible combinational area & dynamic
power (without considering the clock network) reductions,
−2.20% and −1.15% respectively, on average, and also good
WNS/TNS improvements, at only +1.75% runtime cost.

VI. CONCLUSIONS

In this paper, we presented the Scalable Boolean
Method (SBM) framework, which consists of effective Boolean
methods designed to be scalable in a modern synthesis flow.
Within SBM, we presented (i) a generalized resubstitution
framework based on computing and implementing the Boolean
difference between two nodes, (ii) a gradient-based AIG op-
timization, (iii) a heterogeneous elimination for kerneling and

4The smallest known AIG for arbiter has been computed by strashing the
previous best LUT6 result and running resyn2rs until no improvement is seen.

TABLE III: Post Place&Route Results on 33 Industrial Design

Flow Comb. Area∗ No-clk Dyn. Pow.∗ WNS∗ TNS∗ Runtime
Baseline 1 1 1 1 1

Proposed flow -2.20% -1.15% -0.56% -5.99% +1.75%

∗“Comb. Area” is the combinational area, “No-clk Dyn. Pow” is the dynamic
power of the circuit without considering the clock, “WNS” is the worst
negative slack, and “TNS” is the total negative slack.

(iv) a revisiting of MSPF computation with BDDs. We showed
significant synthesis results. We obtained strong improvements
of the smallest known AIGs for EPFL benchmarks, and we
improved 12 of the best known area results in the EPFL
synthesis competition. We demonstrated -2.20% combinational
area savings and -5.99% total negative slack reduction, after
physical implementation, at contained runtime cost for a com-
mercial EDA flow.

ACKNOWLEDGMENTS

This research was supported in part by the Swiss National
Science Foundation (200021-169084 MAJesty), by H2020-
ERC-2014-ADG 669354 CyberCare, by the Defense Advanced
Research Projects Agency (DARPA - FA8650-18-2-7849) and
by SRC contracts 2710.001 and 2867.001.

REFERENCES

[1] L. Amarú and et al., “Improvements to Boolean resynthesis,” Design,
Automation and Test in Europe, 2018.

[2] “https://github.com/lsils/benchmarks.”
[3] R. K. Brayton and et al., “Multilevel logic synthesis,” Proceedings of

the IEEE, vol. 78, no. 2, pp. 264–300, 1990.
[4] S. Muroga and et al., “The transduction method-design of logic net-

works based on permissible functions,” IEEE Trans. on Computers,
vol. 38, no. 10, pp. 1404–1424, 1989.

[5] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[6] R. K. Brayton and et al., “An exact minimizer for Boolean relations,”
Int’l Conf. on Computer-Aided Design, pp. 316–319, 1989.

[7] C. Yang and et al., “BDS: a BDD-based logic optimization system,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 21, no. 7,
pp. 866–876, 2002.

[8] A. Mishchenko and et al., “Scalable don’t-care-based logic optimiza-
tion and resynthesis,” ACM Trans. on Reconfigurable Technology and
Systems, vol. 4, no. 4, pp. 34:1–34:23, 2011.

[9] K. Debnath and et al., “SAT-based redundancy removal,” Design,
Automation and Test in Europe, pp. 315–318, 2018.

[10] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[11] S. P. Khatri and et al., Eds., Advanced Techniques in Logic Synthesis,
Optimizations and Applications. Springer, 2011.

[12] A. Mishchenko and et al., “DAG-aware AIG rewriting a fresh look
at combinational logic synthesis,” in Design Automation Conference,
2006, pp. 532–535.

[13] “ABC synthesis tool: https://github.com/berkeley-abc/abc.”
[14] R. Drechsler and et al., Binary decision diagrams: theory and imple-

mentation. Springer Science & Business Media, 2013.
[15] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation

of a BDD package,” in Design Automation Conference, 1990.
[16] L. Machado and et al., “Support-reducing functional decomposition for

FPGA technology mapping,” Int’l Workshop on Logic and Synthesis,
2018.

